Evaluation of Lipoxygenase Inhibitory Activity of Anacardic Acids

Isao Kubo^{a,*}, Tae Joung Ha^a, Kazuo Tsujimoto^b, Felismino E. Tocoli^c, and Ivan R. Green^c

- ^a Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3114, USA, Fax: +1-5 10-6 43-63 03.
- E-mail: ikubo@calmail.berkelev.edu ^b School of Material Sciences, Japan Advanced Institute of Science and Technology,
- Nomi, Ishikawa 923-1292, Japan ^c Department of Chemistry, University of the Western Cape, P/Bag X17, Bellville, 7530, Republic of South Africa
- * Author for correspondence and reprint requests

Z. Naturforsch. **63 c**, 539–546 (2008); received November 28, 2007/February 1, 2008

6-Alkylsalicylic acids inhibit the linoleic acid peroxidation catalyzed by soybean lipoxygenase-1 (EC 1.13.11.12, type 1) competitively and without pro-oxidant effects. This activity is largely dependent on the nature of their alkyl side chains. Inhibitory activities of anacardic acids, viz. 6-pentadec(en)ylsalicylic acids, isolated from the cashew Anacardium occidentale, were initially used for comparison because their aromatic head portions are the same. Consequently, the data should be interpreted to mean that changes in the hydrophobic side chain

tail portions of the molecules evaluated correlate with the specific activity determined. Key words: Lipoxygenase, Anacardic Acids, Inhibitory Activity, Hydrophobicity